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Expanders,  
Tropical Semi-rings, 
and Nuclear Norms.  
Oh My!  
Scientific computing for social and modern information networks.
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W hat does “The Matrix” have to do with “The Social Network”? Answering this 
question will take us on a tour of how scientific computing applies to many 
of the hottest problems studied in computer science today. From a grossly 
simplified point of view, scientific computing involves two intertwined activities: 

mathematical modeling of a problem and numerical computing in order to evaluate the model. 
Consider the stereotypical textbook problem: How does heat diffuse through a plate? 

Physically, the problem corresponds with a linear partial differential equation (PDE). Nu-
merically, a matrix problem or discrete time dynamical system then “solves” the PDE. 

Scientific computing for social net-
works proceeds in the same way. Sup-
pose a movie studio wishes to under-
stand who might be interested in their 
latest sci-fi action thriller, and they 
have surveyed a small portion of peo-
ple from Facebook to see if they like 
it. If your opinion of movies matches 
your friends’ views on movies (links 
with this property often arise from a 
phenomena known as homophily in 
sociology [1]) then the answer to the 
movie studio’s question corresponds 
to a social diffusion model. This dif-
fusion gives rise to a numerical matrix 
problem that “solves” the model (see 
Figure 1). This problem is called semi-

supervised learning on networks [2], 
and it applies whenever we have a par-
tially labeled network with homophily 
links. More importantly for this arti-
cle, it represents one relationship be-
tween matrices and social networks. 

Matrices that arise from social net-
works can, in many senses, be incred-
ibly different from the matrix prob-
lems that arise in scientific computing 
for physical sciences. One key differ-
ence is that social networks fall into 
a group known as “expanders”; if you 
look at the friends of any small group 
of people, it usually expands to an-
other group of roughly the same size. 
For connected discrete sets like net-

works, this property is often explained 
as a surface-area-to-volume ratio. The 
volume is the size of the set, and the 
surface area is the size of the boundary 
set of connected elements. In a social 
network, the volume is the number of 
people inside a group and the surface 
area is the number of friends connect-
ed to the group, but not inside. The fact 
that these two sets have roughly the 
same size is radically different from 
the surface area to volume ratio of any 
physical problem. Once we discretize 
a physical space, just think about how 
the number of points inside of a spher-
ical shape grows in relationships to the 
number of points on the boundary! 
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of information; thus a third, weaker, 
form of validation is sometimes appro-
priate: Demonstrate that adding your 
new solution to an ensemble of exist-
ing solutions enables better predic-
tions for some tricky problem. 

The PDE models in physical prob-
lems are typically derived from accept-
ed physical laws. We do not yet have 
any completely accepted “social net-
work laws.” Without such laws, we run 
into two problems. First, all too often, 
I see research that applies a state of the 
art method from scientific comput-
ing to a social dataset. Interesting but 
anecdotal results are shown, and the 
method is declared successful. With-
out any laws, it’s difficult to argue. But, 
because there was no model guiding 
the particular computations, it’s hard 
to judge how these methods will do in 
the future. Instead, researchers should 
first define and model the problem 
they wish to solve, and then determine 
how this problem gives rise to an algo-
rithmic method. 

For instance, there are two types of 
social diffusion. The first models a dif-
fusion of a conserved quantity (think of 
attention or importance, which are fun-

(See Figure 2 for an illustration of the 
effect.) As a result, expander graphs 
yield matrix problems with incredibly 
intricate connections that challenge 
off-the-shelf parallel matrix libraries 
[3]. Dealing with this problem is only 
one of the challenges posed by scien-
tific computing for social networks.

A bigger challenge is that check-
ing solutions is non-trivial. For the 
problem of heat diffusion in a plate, 
it isn’t too difficult to setup a small 
experiment in order to check the 
answer from your simulation. Usu-
ally, we understand enough about the 
physics to spot “non-physical” PDE 
solutions instantly, but we have no 
such intuition about the physics of 
social networks. So to check an an-
swer to the “movie diffusion” ques-
tion posed earlier, you’d have to sur-
vey individuals to determine whether 
they’d seen the movie, and given that, 
if they liked it. Such experiments 
are often done on a small scale, but 
imagine trying to check your answers 
for the social network of a large uni-
versity with 30,000 students. Sur-
veying even a small portion of them 
would be arduous. Thus, checking 

if your answer is “non-physical”  
is often impossible for social network 
research. There are three common 
alternatives. 

The first is to cook up a synthetic 
problem where you know the answer 
and check that you get it. The second 
is to evaluate the predictive power of 
a model on a standard test data set—
usually collected and distributed by 
another researcher—using a cross-
validation approach. Researchers have 
found social prediction tasks benefit 
by combining many different types 

Matrices that arise 
from social networks 
can, in many senses, 
be incredibly 
different from the 
matrix problems that 
arise in scientific 
computing for 
physical sciences.
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damentally limited); the second type 
models a diffusion of a virtual good 
(think of sending links or a virus spread-
ing on a network), which can be copied 
infinitely often. Google’s celebrated 
PageRank model uses a conservative 
diffusion to determine importance of 
pages on the Web [4], whereas those 
studying when a virus will continue to 
propagate found the eigenvalues of the 
non-conservative diffusion determine 
the answer [5]. Thus, just as in scientific 
computing, marrying the method to 
the model is key for the best scientific 
computing on social networks. 

Ultimately, none of these steps dif-
fer from the practice of physical sci-
entific computing. The challenges in 
creating models, devising algorithms, 
validating results, and comparing 
models just take on different chal-
lenges when the problems come from 
social data instead of physical mod-
els. Thus, let us return to our starting 
question: What does the matrix have 
to do with the social network? Just as 
in scientific computing, many inter-
esting problems, models, and meth-
ods for social networks boil down to 
matrix computations. Yet, as in the 
expander example above, the types of 
matrix questions change dramatical-
ly in order to fit social network mod-
els. Let’s see what’s been done that’s 
enticingly and refreshingly different 
from the types of matrix computa-
tions encountered in physical scien-
tific computing.

EXPANDER GRAPHS AND  
PARALLEL COMPUTING 
Recently, a coalition of folks from aca-
demia, national labs, and industry set 
out to tackle the problems in parallel 
computing and expander graphs. They 
established the Graph 500 benchmark 
(http://www.graph500.org) to measure 
the performance of a parallel com-
puter on a standard graph computa-
tion with an expander graph. Over the 
past three years, they’ve seen perfor-
mance grow by more than 1,000-times 
through a combination of novel soft-
ware algorithms and higher perfor-
mance parallel computers. But, there 
is still work left in adapting the soft-
ware innovations for parallel comput-
ing back to matrix computations for 
social networks.

figure 1. In a standard scientific computing problem, we find the steady state heat 
distribution of a plate with a heat-source in the middle. this scientific problem 
is solved via a linear system. In a social diffusion problem, we are trying to find 
people who like the movie (labeled in dark orange) instead of people who don’t  
like the movie (labeled in dark purple). by solving a different linear system, we can 
determine who is likely to enjoy the movie (light orange).
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figure 2. the network, or mesh, from a typical problem in scientific computing 
resides in a low dimensional space—think of two or three dimensions. these physical 
spaces put limits on the size of the boundary or “surface area” of the space given its 
volume. No such limits exist in social networks and these two sets are usually about 
the same size. a network with this property is called an expander network.
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MATRIX COMPUTATIONS  
WITH SEMI-RINGS 
One of the neatest uses for matrix com-
putations on social networks is to com-
pute standard graph algorithms, such 
as breadth-first searches, connected 
components, shortest paths, minimum 
spanning trees, and matchings, by re-
stating the graph algorithm as a matrix 
computation over a semi-ring. A semi-
ring is a more general number system 
than the real and complex numbers. 
Practically speaking, using a semi-ring 
approach often involves something like 
a matrix-vector multiplication where 
the meanings of addition, multiplica-
tion, 1, and 0 have all changed. 

For instance, in computing a short-
est path, “a × b” in a matrix equation 
is reinterpreted as “add a and b” and 
“a + b” is reinterpreted as “take the 
minimum of a and b.” The resulting 
algebraic structure is called the “tropi-
cal semi-ring.” Using it along with stan-
dard parallel matrix constructions en-
ables highly scalable computations for 
social networks. See, for instance, the 
combinatorial BLAS package [6]. Many 
of the MapReduce-based graph compu-
tations also use these formulations [7]. 
For more information, see the excellent 
edited volume, Graph Algorithms in the 
Language of Linear Algebra [8].

SPARSE, LOCAL  
MATRIX COMPUTATIONS 
How can you solve a linear system with-
out even looking at all the elements of 
the matrix? In general, you can’t but for 
a class of problems that exhibit a prop-
erty called “localization” you can find 
a good approximation of the solution. 
Many of the linear systems that arise 
in social network analysis have these 
properties and we can compute local-
ized solutions without even looking 
at the entire matrix [9]. The algorithm 
does a greedy-like exploration of the 
network around the values where the 
right hand side is large. For one particu-
lar type of social diffusion, we were able 
to find a good approximate solution on 
a network with 100,000,000 links in un-
der a second [10]. When you can exploit 
this type of structure in a problem, it 
means that you don’t need a large com-
puter to solve it, but a laptop instead.

Most of the techniques above apply 
to almost any problem in matrix com-

putations for social networks. To get 
more insight out of networks of data, 
though, researchers are also proposing 
new types of matrix models custom-
ized for social networks. 

FUNCTIONS OF MATRICES 
Think back to your ordinary differen-
tial equations (ODEs) class. How did 
you solve a 2x2 system of linear ODEs? 
You probably remember exponentiat-
ing the system represented as a ma-
trix, but this didn’t mean comput-
ing the exponential of each element, 
instead you looked at a function of a 
matrix. The same methodology ap-
plies to social network problems such 
as determining the importance of a 
node in a network. In fact, the matrix 
exponential of the adjacency matrix 
of a network computes a particular 
type of social diffusion. More com-
plex models include using hyperbolic 
sines and cosines. But, evaluating 
functions of matrices with large net-
works required a new type of matrix 
computation. Golub and Meurant 
provided the basis for these innova-
tions in their groundbreaking work 
on matrices, moments, and quadra-
ture [11]. These methods have now 

been utilized and extended for the 
problems arising in network research 
[10, 12, 13]. This is the best type of re-
search in the area, when new models 
give rise to new applications of algo-
rithmic innovations. 

UNCERTAINTY QUANTIFICATION 
Virtually all computational models 
have some parameters. In the heat- 
diffusion-in-a-plate, how conduc-
tive is the plate? In the movie-social-
diffusion, how likely is movie interest 
to follow a link? In order to understand 
the effect of variability in these pa-
rameters, the uncertainty quantifica-
tion (UQ) community proposed a large 
set of new models and techniques 
for physical scientific computations. 
These same models and techniques 
also apply to social and information 
networks [14], where they can yield 
new insights about the importance of 
nodes in a network or about the sen-
sitivity of these importance scores. 
In my past work on this topic, I used 
a method from UQ in order to create 
a new type of sensitivity measure for 
Web pages. It helped us to improve a 
detection algorithm for whether or not 
a Web page is spam and led us to look 
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figure 3. a social network of children’s interactions in five categories treated 
with a 3-d matrix-like data structure from bott. this figure is one of the earliest 
applications of matrix and tensor methods to social networks. the image is taken 
from h. bott’s  “observation of Play activies in a Nursery School” published in  
Child behavior, differential and Genetic Psychology.
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into measuring how often people actu-
ally click links on the Web [15].

TENSOR METHODS 
Why do we have to work with two-
dimensions matrices? We don’t! The 
study of tensor methods for data arrays 
with three or more dimensions has ex-
ploded over the past 10 years. Kolda and 
Bader did a fantastic job summariz-
ing much of the recent work in the area 
[16]. What is perhaps surprising is that 
tensor methods for social networks are 
actually very old. Some of the methods 
date back to psychology literature in the 
1920s and 1930s (see Figure 3 for an ex-
ample). Recent work has shown many ten-
sor problems are much harder than their 
matrix analogs—usually NP-hard [17]. 
Nevertheless, these new models are fre-
quently used to derive insight into so-
cial networks, for example Dunlavy et 
al. studied temporal patterns [18].

 MODERN MATRIX NORMS 
Given a matrix, how large or complex is 
it? Matrix norms answer this question. 
In most matrix computations classes, 
it is my experience that matrix norms 
beyond the common Frobenius and p-
norms are rarely covered. (Obviously, 
some exceptions apply.) But there is an 
enormous diversity of matrix norms 
beyond these textbook cases. For in-
stance, in order to predict movie rat-
ings in the Netflix dataset, Candes et 
al. wanted to find the simplest matrix 
that fit the data [19]. They used the idea 
of matrix rank as a measure of simplic-
ity. Unfortunately, solving this prob-
lem exactly, in general, is intractable 
in the NP-hard sense of the word. How-
ever, they were able to solve an impor-
tant special case by using the nuclear 
norm of a matrix as a proxy for rank. In 
machine learning on networks, max-
norms are used to measure a different 
type of complexity and cut-norms are a 
different type of measure. Even evalu-
ating the cut-norm for a general matrix 
is an NP-hard problem. These mod-
ern norms enrich our ability to model 
problems on social networks, and they 
are fruitful areas for future research 
due to their recency.

And so, what does the future hold? 
Hopefully more of the same. The best 
research in the future will follow the 
same patterns: find a problem on a 

social network, determine a realistic 
model, and then decide on a comput-
able method to solve the model. Hope-
fully, I’ve convinced you of the useful-
ness of stating problems as matrix 
problems. To continue to do this in 
the future, the field needs interdisci-
plinary students and researchers who 
are educated in probability, machine 
learning, large-scale matrix computa-
tions, parallel computing, scientific 
computing, and statistics. To con-
clude, here are two problems I think 
are due for breakthroughs soon.

Model Reduction. We don’t solve 
physical problems with individual at-
oms and particles of matter. Instead, 
we’ve built laws in order to abstract 
or average these details away. Yet, all 
of the computations discussed work 
on each-and-every node and edge in 
graphs with over a billion nodes. We 
need fresh ideas on how to leverage 
these models or abstract the details.

Higher Order Analysis. I also think 
there will be many interesting prob-
lems and research that arises out of 
thinking of social networks as collec-
tions of higher order groups. Finite ele-
ments, for instance, are usually defined 
as polynomials on the face of a triangle 
or other geometric structure. Why not 
look at social networks as collections 
of triangles where all three individual 
edges exist? New tensor methods will 
be key components of these analyses.
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